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 ងខិតតៃ័យ 
កនុងអតថបទទៃេះ ទយើងៃឹងទម្បើម្ទឹ តើបទ Floquet  ម្ាបក់ារ ើវជិ្ជាៃៃងិាៃមួបទ ើ
 ំហ Banach ទ ើរបើ ិកាភាពាៃចទរលើយៃងិភាពាៃចទរលើយខ្តរយួគត់នៃបញ្ហា
តនរលផ្ទា  ់ Floquet ៃិងបញ្ហា  adjoint រប ់វា។ ទយើងៃងឹទម្បើ ទៅខ្ននកចុងទម្កាយ

ាខ្   ម្ទឹ តើបទទៃេះទៅទ ើ រើការ រព័ៃធអាយុ ៃទរគុណវជិ្ជាៃៃិងាៃមួប 
ទ ើរបើ ិកា វ័យគុណ Floquet ខ្  ជារង្វវ  ់នៃអាម្ាកំទណើ ៃ។ ម្ បទព ជារួយ
ោន ទៃេះ ទយើងៃងឹទទួ បាៃៃូវការថយចុេះខ្បបអុចិ ប បូណង់ខ្ ែ ៃងិអា ុើរតូតរយៈ
ទព ខ្វងារវធិើសាស្ត តអង់ម្តពូើ។ 

 

Abstract 
In this paper, Floquet's theory will be applied to a positive periodic 
operator on a Banach space to show the existence and uniqueness of 
a solution to Floquet eigenvalue problems and their adjoints. Then, the 
theory will be applied to an age-structured equation with positive and 
periodic coefficients to study a Floquet exponent, which measures the 
growth rate of a population. At the same time, exponential and long-
run asymptotic decay will be derived using the entropy method. 
 
Keywords: Eigenvalue problem, age-structured equation, Floquet 
theory 
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Introduction 
When modelling population dynamics, the first step is to identify 

significant variables that enable the division of a population into 

homogeneous subgroups. This is used to describe the dynamics of the 

interaction between these groups. Age is one of the most natural and 

significant parameters for structuring a population. Many internal variables 

are dependent on age. For example, age differences may be associated with 

different reproductive and survival abilities. 

A model for age-structured populations (McKenDrick, 1926; von Foerster, 

1959) was designed to study disease transmission in populations. Often 

diseases have different infection and mortality rates for different age groups 

(Anderson & May, 1991). For instance, chickenpox or measles are spread 

mainly via contact between two members of a population of a similar age. In 

models of disease transmission, an age-structured equation is useful as it 

allows the ages of different members of a population to be accounted for 

when determining variables such as contact rates. 

Iannelli & Milner (2017) defined the evolution of a population over time 

using an age density function known as the McKendrick equation. There are 

several reasons for introducing time dependence between the coefficients of 

this equation. A common rationale is to represent seasonality. Another is 

related to modelling cell division in cancer treatments, such as resonance and 

chrono-therapy, which are based on modelling Circadian rhythms 

(Clairambault, Michel & Perthame, 2016). 
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In this paper, an age-structured model is analyzed for the periodic death 

and birth rate of a population over time. It uses a partial differential evolution 

equation (Iannelli & Milner, 2017) that models the dynamic nature of the 

population density 𝑛(𝑡, 𝑥) of individuals aged 𝑥 > 0 at a time 𝑡 ∈ (0,∞) with 

age-dependent birth and death rates. The age-structured equation has the 

following form 

{
 
 

 
 
𝜕

𝜕𝑡
𝑛(𝑡, 𝑥) +

𝜕

𝜕𝑥
𝑛(𝑡, 𝑥) + 𝑑(𝑡, 𝑥)𝑛(𝑡, 𝑥) = 0,  ∀𝑡 ≥ 0, 𝑥 ≥ 0

𝑛(𝑡, 𝑥 = 0) = ∫ 𝐵(𝑡, 𝑥)𝑛(𝑡, 𝑥)𝑑𝑥
∞

0

𝑛(𝑡 = 0, 𝑥) = 𝑛0(𝑥),

 

where 𝑑(𝑡, 𝑥) 𝑎𝑛𝑑 𝐵(𝑡, 𝑥) represent the death and birth rate of a 

population, respectively, as periodic functions with a period 𝑇. 

This work derives a solution for the age-structured equation and its long-

run asymptotic exponential decay, as well as a proof of its uniqueness. 

Methodology 

An age-structured model based on a partial differential evolution 

equation has been used to predict population density dynamics. More 

specifically, this is an eigenvalue problem that poses some fundamental 

questions about the existence and uniqueness of these equations. To answer 

these questions, Floquet’s theory is applied to a Banach space. This is an 

extension of applying Floquet’s theory to a matrix (Brown, Easthem & 

Schmidt, 2013) to prove the existence of a Floquet exponent. Then, the long 

run asymptotic exponential decay of the solution of the age-structured 
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equation is proven via the entropy method (Perthame, 2007; Michel, Mischler 

& Perthame, 2004; 2005). 

Results and Findings  

This work comprises two parts. The first deals with the extension of 

Floquet’s theory for any positive periodic matrix to any positive periodic 

operator on a Banach space. More specifically, a linear differential equation 

of the form  

𝑑

𝑑𝑡
𝑋(𝑡) = 𝐴(𝑡)𝑋(𝑡), 

where 𝑡 ∈ 𝑅+, 𝑋(𝑡) is a vector on a Banach space 𝐸 and 𝐴(𝑡) is a periodic 

continuous operator with period  𝑇 on 𝐸. 

The existence and uniqueness of the Floquet exponent  𝜆per  and the positive 

and 𝑇 -periodic 𝑁(𝑡), 𝜙(𝑡) will be proven for the following equations 

 

𝑑𝑁(𝑡)

𝑑𝑡
= 𝐴(𝑡)𝑁(𝑡) − 𝜆per𝑁(𝑡) and −

𝑑𝜙(𝑡)

𝑑𝑡
= 𝐴∗(𝑡)𝜙(𝑡) − 𝜆per𝜙(𝑡). 

The second part of this paper applies these results to an age-structured 

equation. Partial differential evolution equations using coefficients that are 

periodic functions of time are used to model population density dynamics. 

The existence and uniqueness of (𝜆per, 𝑁,𝜙) will be proven for the following 

age-structured equation: 

{
 
 

 
 
𝜕

𝜕𝑡
𝑛(𝑡, 𝑥) +

𝜕

𝜕𝑥
𝑛(𝑡, 𝑥) + 𝑑(𝑡, 𝑥)𝑛(𝑡, 𝑥) = 0,  ∀𝑡 ≥ 0, 𝑥 ≥ 0

𝑛(𝑡, 𝑥 = 0) = ∫ 𝐵(𝑡, 𝑥)𝑛(𝑡, 𝑥)𝑑𝑥
∞

0

𝑛(𝑡 = 0, 𝑥) = 𝑛0(𝑥).
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The associated Floquet eigenvalue problem of the age-structured equation 

above is given by: 

{
  
 

  
 
𝜕

𝜕𝑡
𝑁(𝑡, 𝑥) +

𝜕

𝜕𝑥
𝑁(𝑡, 𝑥) + (𝜆per + 𝑑(𝑡, 𝑥))𝑁(𝑡, 𝑥) = 0,  ∀𝑡 ≥ 0, 𝑥 ≥ 0

𝑁(𝑡, 𝑥 = 0) = ∫ 𝐵(𝑡, 𝑥)𝑁(𝑡, 𝑥)𝑑𝑥
∞

0

𝑁(𝑡, 𝑥) > 0, 𝑇 − periodic, ∫ ∫ 𝑁(𝑡, 𝑥)𝑑𝑥𝑑𝑡
∞

0

𝑇

0

= 1,

 

And it’s adjoint eigenvalue problem is given by 

{
 
 

 
 −

𝜕

𝜕𝑡
𝜙(𝑡, 𝑥) −

𝜕

𝜕𝑥
𝜙(𝑡, 𝑥) + (𝜆per + 𝑑(𝑡, 𝑥))𝜙(𝑡, 𝑥) = 𝐵(𝑡, 𝑥)𝜙(𝑡, 0), 

                                                                                                      ∀𝑡 ≥ 0, 𝑥 ≥ 0

𝜙(𝑡, 𝑥) > 0, 𝑇 − periodic, ∫ 𝑁(𝑡, 𝑥)𝜙(𝑡, 𝑥)𝑑𝑥
∞

0

= 1.

 

The long-run asymptotic exponential decay of this equation is derived as 

follows: 

∫ |𝑛(𝑡, 𝑥)𝑒−𝜆per𝑡 − 𝜌𝑁(𝑡, 𝑥)|𝜙(𝑡, 𝑥)𝑑𝑥
∞

0

≤ 𝑒−𝛼𝑡∫ |𝑛0(𝑥) − 𝜌𝑁(0, 𝑥)|𝜙(0, 𝑥)𝑑𝑥.
∞

0

 

where 𝜌 = ∫ 𝑛0(𝑥)𝜙(0, 𝑥)𝑑𝑥
∞

0
 and its long-run asymptotic behaviour via the 

entropy method 

∫ |𝑛(𝑡, 𝑥)𝑒−𝜆per𝑡 − 𝜌𝑁(𝑡, 𝑥)|𝜙(𝑡, 𝑥)𝑑𝑥 →  0 𝑎𝑠 𝑡 → ∞.
∞

0

 

Floquet’s Theory 

Floquet theory for matrix. The following homogeneous linear periodic system 

                                  
𝑑

𝑑𝑡
𝑋(𝑡) = 𝐴(𝑡)𝑋(𝑡),                                            (1.1) 
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where 𝑋 ∈ 𝑅𝑑 and 𝐴(𝑡) is a continuous 𝑑 × 𝑑 real matrix-valued function in 

𝑡, and 𝐴(𝑡 + 𝑇) = 𝐴(𝑡), 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑇 > 0. A unique solution exists for 

Equation 1.1 for the initial condition 𝑋(𝑡0) = 𝑥0. This solution satisfies 𝑋(𝑡) =

𝛷(𝑡, 𝑡0)𝑥0, where 𝛷(𝑡, 𝑡0), is known as a principal fundamental matrix 

solution and is a solution to the matrix initial value problem 

𝑑

𝑑𝑡
𝛷(𝑡, 𝑡0) = 𝐴(𝑡)𝛷(𝑡, 𝑡0),   𝛷(𝑡0, 𝑡0) = 𝐼. 

1. As this solution is unique, 

𝛷(𝑡, 𝑟) = 𝛷(𝑡, 𝑠)𝛷(𝑠, 𝑟),   ∀𝑟 < 𝑠 < 𝑡 

2. 𝛷(𝑡, 𝑡0) = 𝛷(𝑡0, 𝑡)
−1. 

Thus, it may be observed that  

{

𝑑

𝑑𝑡
𝛷(𝑡 + 𝑇, 𝑡0 + 𝑇) = 𝐴(𝑡 + 𝑇)𝛷(𝑡 + 𝑇, 𝑡0 + 𝑇) = 𝐴(𝑡)𝛷(𝑡 + 𝑇, 𝑡0 + 𝑇)

𝛷(𝑡0 + 𝑇, 𝑡0 + 𝑇) = 𝐼.
 

Again, due to the uniqueness of the solution, 𝛷(𝑡 + 𝑇, 𝑡0 + 𝑇) = 𝛷(𝑡, 𝑡0).  

Now, it may be denoted that,   
 

𝑀(𝑡0) ≔ 𝛷(𝑡0 + 𝑇, 𝑡0) and 𝑀 ≔ 𝛷(𝑇, 0). 
 

Then, it follows that 

𝑀(𝑡1) = 𝛷(𝑡1 + 𝑇, 𝑡1) = 𝛷(𝑡1 + 𝑇, 𝑡0 + 𝑇)𝛷(𝑡0 + 𝑇, 𝑡0)𝛷(𝑡0, 𝑡1)

                  = 𝛷(𝑡1, 𝑡0)𝑀(𝑡0)𝛷(𝑡1, 𝑡0)−1.
 

This means that 𝑀(𝑡0) and 𝑀(𝑡1) are similar for 𝑡0 < 𝑡1 and thus have the 

same eigenvalues. That is, the eigenvalues of 𝑀(𝑡0) are independent of  𝑡0. 

Thus, the eigenvalues of 𝑀 = 𝛷(𝑇, 0), also known as a monodromy matrix, 

are of interest to this study. As 𝑑𝑒𝑡(𝑀) ≠ 0, a constant matrix B exists, 

whereby 𝑀 = 𝑒𝑇𝐵. 
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Definition 1.1. The eigenvalues 𝜌𝑗 of 𝑀 are called Floquet multipliers. The 

complex eigenvalues 𝜆𝑗 of 𝐵 are called Floquet exponents and are related by 

the equation 𝜌𝑗 = 𝑒
𝜆𝑗𝑇. 

Theorem 1.2 (Floquet). If 𝑀 is a monodromy matrix for a T-periodic linear 

system (Equation 1.1). Then, there is an invertible periodic matrix 𝑃(𝑡) and a 

constant matrix B such that 

 𝛷(𝑡, 0) = 𝑃(𝑡)𝑒𝑡𝐵 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑡 > 0. 

Proof. If 𝛹(𝑡) ≔ 𝛷(𝑡 + 𝑇, 0) then the following initial value problem is 

satisfied 

{

𝑑

𝑑𝑡
𝛹(𝑡) = 𝐴(𝑡 + 𝑇)𝛹(𝑡) = 𝐴(𝑡)𝛹(𝑡),

𝛹(0) = 𝑀
 

since 𝐴(𝑡) is 𝑇-periodic, a unique solution is given by 𝛹(𝑡) = 𝛷(𝑡, 0)𝑀.  

Thus,  

𝛷(𝑡 + 𝑇, 0) = 𝛷(𝑡, 0)𝑀 = 𝛷(𝑡, 0)𝑒𝑇𝐵. 

 

By taking 𝑃(𝑡) ≔ 𝛷(𝑡, 0)𝑒−𝑡𝐵, 

𝑃(𝑡 + 𝑇) = 𝛷(𝑡 + 𝑇, 0)𝑒−(𝑡+𝑇)𝐵 = 𝛷(𝑡, 0)𝑒𝑇𝐵𝑒−(𝑡+𝑇)𝐵 = 𝑃(𝑡) 

and 𝑃(0) = 𝐼.  

Theorem 1.3. There exists a real 2𝑇-periodic matrix 𝑄(𝑡) and a real matrix 𝑅 

such that 

𝛷(𝑡, 0) = 𝑄(𝑡)𝑒𝑡𝑅. 

Proof. Since 𝑑𝑒𝑡(𝑀) ≠ 0, there exists a real matrix 𝑅 such that 𝑀2 = 𝑒2𝑇𝑅.  

Thus, it may be defined that (𝑡) ≔ 𝛷(𝑡, 0)𝑒−𝑡𝑅 .  

Then, it follows that 
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𝑄(𝑡 + 2𝑇) = 𝛷(𝑡 + 2𝑇, 0)𝑒−2𝑇𝑅𝑒𝑡𝑅 = 𝛷(𝑡 + 𝑇, 0)𝑀𝑒−2𝑇𝑅𝑒𝑡𝑅

                      = 𝛷(𝑡, 0)𝑀2𝑒−2𝑇𝑅𝑒𝑡𝑅 = 𝛷(𝑡, 0)𝑀2𝑀−2𝑒𝑡𝑅 = 𝑄(𝑡).
 

Therefore, 𝑄 is  2𝑇-periodic.  

Theorem 1.4. If 𝜌𝑗 is a characteristic multiplier and 𝜆𝑗  is a corresponding 

characteristic exponent so that 𝜌𝑗 = 𝑒𝜆𝑗𝑇; then a solution 𝑋(𝑡) exists for 

Equation 1.1, such that 

1. 𝑋(𝑡 + 𝑇) = 𝜌𝑗𝑋(𝑡) 

2.  𝑋(𝑡) = 𝑁(𝑡)𝑒𝜆𝑗𝑡, where 𝑁:𝑅+ → 𝑅𝑑 is a 𝑇- periodic function. 

Proof. If 𝜌𝑗 is an eigenvalue of 𝑀, then 𝑣𝑗 ≠ 0 and 𝑀𝑣𝑗 = 𝜌𝑗𝑣𝑗 . Thus, if 𝑋(𝑡) =

𝛷(𝑡, 𝑡0)𝑣𝑗, then 𝑋(𝑡) satisfies the initial value problem 

{

𝑑

𝑑𝑡
𝑋(𝑡) = 𝐴(𝑡)𝑋(𝑡),

𝑋(𝑡0) = 𝑣𝑗  .         
 

It follows that 

𝑋(𝑡 + 𝑇) = 𝛷(𝑡 + 𝑇, 𝑡0)𝑣𝑗 = 𝛷(𝑡, 𝑡0)𝑀𝑣𝑗 = 𝜌𝑗𝛷(𝑡, 𝑡0)𝑣𝑗 = 𝜌𝑗𝑋(𝑡). 

 

Furthermore, by taking 𝑁(𝑡) = 𝑋(𝑡)𝑒−𝜆𝑗𝑡 and using the fact that  𝜌𝑗 = 𝑒𝜆𝑗𝑇, 

it may be stated that 

𝑁(𝑡 + 𝑇) = 𝑋(𝑡 + 𝑇)𝑒−𝜆𝑗(𝑡+𝑇) = 𝜌𝑗𝑋(𝑡)𝑒
−𝜆𝑗𝑡𝑒−𝜆𝑗𝑇 = 𝑋(𝑡)𝑒−𝜆𝑗𝑡 = 𝑁(𝑡). 

So, when 𝐴(𝑡) is a positive 𝑇-periodic function, and if ∫ 𝐴(𝑡)𝑑𝑡
𝑇

0
 is positive 

and irreducible, then matrix B in Theorem 1.2 is also positive and irreducible, 

leading to the following corollary. 

Corollary 1.5. There exists a Floquet exponent λper > 0 and a 𝑇-periodic 

𝑁(𝑡) > 0 satisfying 
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𝑑𝑁(𝑡)

𝑑𝑡
= 𝐴(𝑡)𝑁(𝑡) − 𝜆per𝑁(𝑡). 

Proof. Since 𝐵 is positive and irreducible, so is 𝑀. Thus, by the Perron-

Frobenius theorem, an eigenvalue λ > 0 of 𝐵 exists and is associated with a 

positive eigenvector. If it is taken that λper = λ > 0. Then 𝑒𝜆per𝑇 is a positive 

eigenvalue of 𝑀 associated with a positive eigenvector 𝑣.  

Then it may be defined that 

𝑁(𝑡) = 𝑋(𝑡)𝑒−𝜆per𝑡, 

where 𝑋(𝑡) = 𝛷(𝑡, 𝑡0)𝑣 and the desired result follows from Theorem 1.4.  

Next, the adjoint linear periodic system can be considered 

                        
𝑑

𝑑𝑡
𝑍(𝑡) = −𝐴∗(𝑡)𝑍(𝑡).                                                 (1.2) 

Given 𝑍(𝑡0) = 𝑧0, it has a unique solution 𝑍(𝑡) = 𝛹(𝑡0, 𝑡)𝑧0, where 𝛹(𝑡0, 𝑡) 

is defined as the matrix solution to 

𝑑

𝑑𝑡
𝛹(𝑡0, 𝑡) = −𝐴∗(𝑡)𝛹(𝑡0, 𝑡),   𝛹(𝑡0, 𝑡0) = 𝐼. 

The monodromy matrix 𝑀∗ then may be defined as follows: 

𝑀∗ ≔ 𝛹(0, 𝑇) = (𝛷∗(0, 𝑇))
−1
= (𝛷(𝑇, 0))

−1
= 𝑀−1. 

Theorem 1.6. If 𝜌𝑗 be a characteristic multiplier and 𝜆𝑗 is a corresponding 

characteristic exponent so that 𝜌𝑗 = 𝑒𝜆𝑗𝑇. Then there exists a solution 𝑍(𝑡) 

to Equation 1.2 such that 

1. 𝑍(𝑡 + 𝑇) =
1

𝜌𝑗
𝑍(𝑡). 

2. 𝑍(𝑡) = 𝜙(𝑡)𝑒−𝜆𝑗𝑡  for some 𝑇-periodic function 𝑡 ↦ 𝜙(𝑡) ∈ 𝑅𝑑 . 

Proof. If 𝜌𝑗 be an eigenvalue of  𝑀, then, 𝑣𝑗 ≠ 0 such that 𝑀𝑣𝑗 = 𝜌𝑗𝑣𝑗. Let 

𝑍(𝑡) = 𝛹(𝑡0, 𝑡)𝑣𝑗 . Thus 𝑍(𝑡) satisfies the following initial value problem 
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{

𝑑

𝑑𝑡
𝑍(𝑡) = −𝐴∗(𝑡)𝑍(𝑡),

𝑍(𝑡0) = 𝑣𝑗                
 

Then, 

𝑍(𝑡 + 𝑇) = 𝛹(𝑡0, 𝑡 + 𝑇)𝑣𝑗 = 𝛹(𝑡0, 𝑡)𝑀
−1 𝑣𝑗 = 𝜌𝑗

−1𝛹(𝑡0, 𝑡)𝑣𝑗 =
1

𝜌𝑗
𝑍(𝑡). 

And it may be defined that 𝜙(𝑡) = 𝑍(𝑡)𝑒𝜆𝑗𝑡. Thus if 𝜌𝑗 = 𝑒𝜆𝑗𝑇, it follows that 

𝜙(𝑡 + 𝑇) = 𝑍(𝑡 + 𝑇)𝑒𝜆𝑗(𝑡+𝑇) = 𝜌𝑗
−1𝑍(𝑡)𝑒𝜆𝑗𝑡𝑒𝜆𝑗𝑇 = 𝑍(𝑡)𝑒𝜆𝑗𝑡 = 𝜙(𝑡). 

Corollary 1.7. Under the assumption that 𝐴(𝑡) is positive and 𝑇-periodic, a 

Floquet exponent λper > 0 and a 𝑇-periodic 𝜙(𝑡) > 0 exists satisfying 

 

−
𝑑𝜙(𝑡)

𝑑𝑡
= 𝐴∗(𝑡)𝜙(𝑡) − 𝜆per𝜙(𝑡). 

Proof. Since 𝐵 is positive and irreducible, so is 𝑀. Therefore, by the Perron-

Frobenius theorem there exists an eigenvalue λ > 0 of 𝐵 with an associated 

positive eigenvector. If it is taken that λper = λ > 0, then 𝑒𝜆per𝑇 is a positive 

eigenvalue of 𝑀 associated with a positive eigenvector 𝑣. Thus it may be 

defined that 

𝜙(𝑡) = 𝑍(𝑡)eλpert, 

where 𝑍(𝑡) = 𝛹(𝑡0, 𝑡)𝑣 and the desired result follows from Theorem 1.6.  

 Floquet theory on Banach space 

If a linear periodic system on a Banach space 𝐸 is considered, 

 

                                     
𝑑

𝑑𝑡
𝑋(𝑡) = 𝐴(𝑡)𝑋(𝑡).                                                        (1.3) 
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where  𝑋 ∈ 𝐸  and  𝐴(𝑡) is a continuous operator-valued 𝑇-periodic. 

Then is a unique solution to Equation 1.3 together with the initial value 

𝑋(𝑡0) = 𝑥0 ∈ 𝐸. This solution is given by 𝑋(𝑡) = 𝑈(𝑡, 𝑡0)𝑥0, where 𝑈(𝑡, 𝑡0) is 

a linear and bounded operator on 𝐸 and satisfies the following properties: 

1. 
𝑑

𝑑𝑡
𝑈(𝑡, 𝑡0) = 𝐴(𝑡)𝑈(𝑡, 𝑡0),   𝑈(𝑡0, 𝑡0) = 𝐼 

2. 𝑈(𝑡, 𝑟) = 𝑈(𝑡, 𝑠)𝑈(𝑠, 𝑟),   𝑓𝑜𝑟 𝑎𝑛𝑦 𝑟 ≤ 𝑠 ≤ 𝑡 

3. 𝑈(𝑡 + 𝑇, 𝑡0 + 𝑇) = 𝑈(𝑡, 𝑡0). 

If an operator-valued function is specified as 𝑀(𝑡0) ≔ 𝑈(𝑡0 + 𝑇, 𝑡0) and a 

monodromy operator as 𝑀 ≔ 𝑈(𝑇, 0), then the following can be denoted: 

Definition 1.8. 𝜇 is an eigenvalue of 𝑀 if 𝜇 ∈ 𝜎𝑝(𝑀), thus, there is a non-zero 

vector 𝑣 of  𝐸 such that 𝑀𝑣 = 𝜇𝑣. This vector is an eigenvector corresponding 

to the eigenvalue 𝜇 of 𝑀. 

Theorem 1.9. The following results hold: 

1. 𝑀(𝑡0 + 𝑇) = 𝑀(𝑡0) 

2. 𝜎𝑝(𝑀(𝑡0)) = 𝜎𝑝(𝑀) where 𝜎𝑝(𝑀) = {𝜇: 𝜇𝐼 − 𝑀 is not one-to-one}. 

Proof.  

1.  By the definition of 𝑀, it follows that 

𝑀(𝑡0 + 𝑇) = 𝑈(𝑡0 + 𝑇 + 𝑇, 𝑡0 + 𝑇) = 𝑈(𝑡0 + 𝑇, 𝑡0) = 𝑀(𝑡0). 

2. It can be proven  that for 𝑡0 < 𝑡1, 𝜎𝑝(𝑀(𝑡0)) = 𝜎𝑝(𝑀(𝑡1)). For 

instance, if 𝜇 ∈ 𝜎𝑝(𝑀(𝑡0)), then 0 ≠ 𝑣 ∈ 𝐸 exists, such that 

𝑀(𝑡0)𝑣 = 𝜇𝑣. Then, if 𝑤 ≔ 𝑈(𝑡1, 𝑡0)𝑣, it follows that 

𝑀(𝑡1)𝑤 = 𝑈(𝑡1 + 𝑇, 𝑡1)𝑤 = 𝑈(𝑡1 + 𝑇, 𝑡1)𝑈(𝑡1, 𝑡0)𝑣 

                                           = 𝑈(𝑡1 + 𝑇, 𝑡0)𝑣 = 𝑈(𝑡1 + 𝑇, 𝑡0 + 𝑇)𝑈(𝑡0 + 𝑇, 𝑡0) 

                       = 𝑈(𝑡1, 𝑡0)𝑀(𝑡0)𝑣 = 𝜇𝑈(𝑡1, 𝑡0)𝑣 = 𝜇𝑤. 
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That is, 𝜇 ∈ 𝜎𝑝(𝑀(𝑡1)). This means that 𝜎𝑝(𝑀(𝑡0)) ⊆ 𝜎𝑝(𝑀(𝑡1)). 

Conversely, it may be said that if 𝑛0 ∈ 𝑁 large enough, so that 𝑛0𝑇 + 𝑡0 > 𝑡1, 

then 𝜎𝑝(𝑀(𝑡1)) ⊆ 𝜎𝑝(𝑀(𝑛0𝑇 + 𝑡0)). Finally, since 𝑀(𝑡0) is 𝑇-periodic, then 

𝜎𝑝(𝑀(𝑡0)) ⊆ 𝜎𝑝(𝑀(𝑡1)) ⊆ 𝜎𝑝(𝑀(𝑛0𝑇 + 𝑡0)) = 𝜎𝑝(𝑀(𝑡0)).  

Theorem 1.10.  If 𝜇 = 𝑒𝜆𝑇, then the following are equivalent. 

1.  𝜇 is an eigenvalue of 𝑀 

2. A 𝑇-periodic function 𝑡 ↦ 𝑁(𝑡) ∈ 𝐸 exists, where 

𝑋(𝑡) = 𝑁(𝑡)𝑒𝜆𝑡 is a solution to Equation 1.3 with an initial value 

𝑋(𝑡0) = 𝑥0.  

Proof. In the theorem above, (1) implies (2). Following the same process as 

the proof for this matrix, (2) also implies (1). Then, if 𝑦0 ≔ 𝑈(0, 𝑡0)𝑥0, it 

follows that 

𝑁(𝑡 + 𝑇) = 𝑋(𝑡 + 𝑇)𝑒−𝜆(𝑡+𝑇) 

                             = 𝑈(𝑡 + 𝑇, 𝑡0)𝑥0𝑒
−𝜆(𝑡+𝑇) 

                                          = 𝑈(𝑡 + 𝑇, 𝑇)𝑈(𝑇, 0)𝑦0𝑒
−𝜆(𝑡+𝑇) 

                                        = 𝑈(𝑡, 0)𝑈(𝑇, 0)𝑦0𝑒
−𝜆(𝑡+𝑇).       

Or alternatively, 

 𝑁(𝑡 + 𝑇) = 𝑁(𝑡)                         

          = 𝑋(𝑡)𝑒−𝜆𝑡       

                                               = 𝑈(𝑡, 𝑡0)𝑥0𝑒
−𝜆𝑡                                  

             = 𝑈(𝑡, 0)𝑦0𝑒
−𝜆𝑡. 

Therefore, 

𝑈(𝑡, 0)𝑈(𝑇, 0)𝑦0 = 𝑒
𝜆𝑇𝑈(𝑡, 0)𝑦0. 

By taking 𝑡 = 0, 
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𝑀𝑦0 = 𝑈(𝑇, 0)𝑦0 = 𝑒
𝜆𝑇𝑦0 

It follows that 𝑒𝜆𝑇 is an eigenvalue of 𝑀.  

Corollary 1.11. If additionally, an operator 𝑈(𝑡, 0) is compact and strictly 

positive on a Banach lattice, then a Floquet exponent λper > 0 and a 𝑇-

periodic 𝑁(𝑡) > 0 exists, satisfying  

                                  
𝑑𝑁(𝑡)

𝑑𝑡
= 𝐴(𝑡)𝑁(𝑡) − 𝜆per𝑁(𝑡).                                   (1.4) 

Proof. Since 𝑀 = 𝑈(𝑇, 0) is compact and strictly positive, the Krein-Rutman 

theorem demonstrates that there is a simple eigenvalue μ > 0 with an 

associated eigenvector 𝑁0 > 0. Taking 𝜆per > 0, such that 𝜇 = 𝑒𝜆per𝑇 and 

defining 𝑁(𝑡) = 𝑋(𝑡)𝑒−𝜆per𝑡 > 0, such that 𝑋(𝑡) is defined as in Theorem 

1.10, the desired result is yielded.  

Corollary 1.12. (Uniqueness). There is a unique solution (up to a multiplicative 

constant) to the Floquet eigenvalue problem in Equation 1.4. 

Proof. If another positive 𝑇-periodic solution 𝑀(𝑡) exists for Equation 1.4, it 

can be proven that 𝑁(𝑡) = 𝑐𝑀(𝑡) as follows 

𝑑

𝑑𝑡
(𝑒𝜆per𝑡𝑀(𝑡)) = 𝐴(𝑡)𝑒𝜆per𝑡𝑀(𝑡). 

The uniqueness of the solution to Equation 1.3 with the initial value gives 

𝑀(𝑡) = 𝑒−𝜆per𝑡𝑈(𝑡, 𝑡0)𝑥0. 

Taking 𝑡 = 𝑇, 

𝑀(0) = 𝑀(𝑇) = 𝑒−𝜆per𝑇𝑈(𝑇, 𝑡0)𝑥0 = 𝑒−𝜆per𝑇𝑈(𝑇, 0)𝑈(0, 𝑡0)𝑥0

= 𝑒−𝜆per𝑇𝑈(𝑇, 0)𝑀(0). 
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Since 𝑀(0) > 0,  𝑒𝜆per𝑇 is an eigenvalue of 𝑀 = 𝑈(𝑇, 0) with an associated 

eigenvector 𝑀(0), then 𝑒𝜆per𝑇 is a simple eigenvalue of 𝑈(𝑇, 0) with an 

associated eigenvector 𝑁0. Hence 𝑀(0) = 𝑐𝑁0. Thus, 

𝑀(𝑡) = 𝑒−𝜆per𝑡𝑈(𝑡, 𝑡0)𝑥0 

   = 𝑒−𝜆per𝑡𝑈(𝑡, 0)𝑀(0) 

= 𝑒−𝜆per𝑡𝑈(𝑡, 0)𝑐𝑁0 

= 𝑐𝑁(𝑡).                 

For the adjoint linear periodic system 

                                            
𝑑

𝑑𝑡
𝑍(𝑡) = −𝐴∗(𝑡)𝑍(𝑡),                                          (1.5)                                                                          

where  𝐴(𝑡) is a continuous 𝑇-periodic linear operator-valued function, the 

following can be denoted. 

Theorem 1.13. If 𝜇 = 𝑒𝜆𝑇, then the following are equivalent. 

1. μ is an eigenvalue of 𝑀 

2. A 𝑇-periodic function 𝑡 ↦ 𝜙(𝑡) ∈ 𝐸 such that 𝑍(𝑡) = 𝜙(𝑡)𝑒−𝜆𝑡 where 

𝑍(𝑡) is the solution of (2.5) with an initial value 𝑍(𝑡0) = 𝑧0 exists. 

Proof. In the theorem above, (1) implies (2). Following the same process as 

the proof for this matrix, (2) also implies (1). Thus 

𝜙(𝑡 + 𝑇)  = 𝑍(𝑡 + 𝑇)𝑒𝜆(𝑡+𝑇) 

                                                               = 𝛹(𝑡0, 𝑡 + 𝑇)𝑧0 𝑒
𝜆(𝑡+𝑇)  

                       = 𝛹(𝑡0, 𝑡)𝛹(0, 𝑇)𝑧0 𝑒
𝜆(𝑡+𝑇). 

Or alternatively, 

   𝜙(𝑡 + 𝑇) = 𝜙(𝑡)                         

         = 𝑍(𝑡)𝑒𝜆𝑡        

                                                                = 𝛹(𝑡0, 𝑡)𝑧0 𝑒
𝜆𝑡 .   



Insight: Cambodia Journal of Basic and Applied Research, Volume 3 No. 2 (2021) 
© 2021 The Authors 
© 2021 Research Office, Royal University of Phnom Penh 

 

46 

 

 

Thus 

𝛹(𝑡0, 𝑡)𝛹(0, 𝑇)𝑧0 = 𝛹(𝑡0, 𝑡)𝑧0 𝑒
−𝜆𝑇 

Taking 𝑡 = 𝑡0, 

𝑀−1𝑧0 = 𝛹(0, 𝑇)𝑧0 = 𝑒
−𝜆𝑇𝑧0 . 

That is, 𝑒𝜆𝑇 is an eigenvalue of 𝑀.  

Corollary 1.14. In addition, if the operator 𝑈(𝑡, 0) is compact and strictly 

positive on a Banach lattice, a Floquet exponent 𝜆per > 0 and a 𝑇-periodic 

𝜙(𝑡) > 0 exists satisfying 

−
𝑑𝜙(𝑡)

𝑑𝑡
= 𝐴∗(𝑡)𝜙(𝑡) − 𝜆per𝜙(𝑡). 

Proof. Since 𝑀 = 𝑈(𝑇, 0) is compact and strictly positive, the Krein-Rutman 

theorem demonstrates that there is a simple eigenvalue 𝜇 > 0 and associated 

eigenvector ϕ0 > 0. If it is taken that 𝜆per > 0, such that 𝜇 = 𝑒𝜆per𝑇 and 

𝜙(𝑡) = 𝑍(𝑡)𝑒𝜆per𝑡 > 0, where 𝑍(𝑡) is defined as in Theorem 1.13, the desired 

result is obtained.  

General relative entropy 

Definition 2.1. (Perthame, 2007, p. 165) If 𝐻 is a real-valued convex function, 

then the general relative entropy (GRE) may be defined as 

∑𝐻(
𝑋𝑖(𝑡)

𝑁𝑖(𝑡)
)𝑁𝑖(𝑡)𝜙𝑖(𝑡),

𝑑

𝑖=1

 

where  𝑋𝑖 (𝑡),𝑁𝑖(𝑡) 𝑎𝑛𝑑 𝜙𝑖 (𝑡) satisfy Equations 2.1, 2.2 and 2.3, respectively. 
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The uniqueness of the solution to the Floquet eigenvalue problem 

If 𝐴(𝑡) = (𝑎𝑖𝑗(𝑡)) ≥ 0 for 1 ≤ 𝑖, 𝑗 ≤ 𝑑, then 𝑋𝑖 (𝑡) > 0,𝑁𝑖(𝑡) > 0, 𝜙𝑖 (𝑡) >

0 and it can also be proven that a unique 𝜆per exists with a maximal real part 

such that 

                            
𝑑𝑋𝑖(𝑡)

𝑑𝑡
= ∑ 𝑎𝑖𝑗(𝑡)𝑋𝑗(𝑡)𝑗 − 𝜆per𝑋𝑖(𝑡)                                   (2.1) 

                                
𝑑𝑁𝑖(𝑡)

𝑑𝑡
= ∑ 𝑎𝑖𝑗(𝑡)𝑁𝑗(𝑡)𝑗 − 𝜆per𝑁𝑖(𝑡)                               (2.2) 

                        −
𝑑𝜙𝑖(𝑡)

𝑑𝑡
= ∑ 𝑎𝑗𝑖(𝑡)𝜙𝑗(𝑡)𝑗 − 𝜆per𝜙𝑖(𝑡).                                 (2.3) 

Theorem 2.2. If 𝐴(𝑡) be a 𝑇-periodic matrix with (𝜆per, 𝑁, 𝜙)  defined as 

above, then for any positive initial conditions, for any solution of Equation 2.1, 

and any positive convex function 𝐻, then 

∀𝑡 ≥ 0,    
𝑑

𝑑𝑡
∑𝐻(

𝑋𝑖(𝑡)

𝑁𝑖(𝑡)
)𝑁𝑖(𝑡)𝜙𝑖(𝑡)

𝑑

𝑖=1

= −𝐷𝐻(𝑋)(𝑡), 

where 

𝐷𝐻(𝑋)(𝑡) =∑𝑎𝑖𝑗(𝑡)𝑁𝑗(𝑡)𝜙𝑖(𝑡) [𝐻
′ (
𝑋𝑖(𝑡)

𝑁𝑖(𝑡)
) (
𝑋𝑖(𝑡)

𝑁𝑖(𝑡)
−
𝑋𝑗(𝑡)

𝑁𝑗(𝑡)
) + 𝐻 (

𝑋𝑗(𝑡)

𝑁𝑗(𝑡)
)

𝑖,𝑗

− 𝐻(
𝑋𝑖(𝑡)

𝑁𝑖(𝑡)
)] ≥ 0. 

Proof. 

𝑁𝑖(𝑡)𝜙𝑖(𝑡)
𝑑

𝑑𝑡
𝐻 (

𝑋𝑖(𝑡)

𝑁𝑖(𝑡)
) = 𝑁𝑖(𝑡)𝜙𝑖(𝑡)𝐻

′ (
𝑋𝑖(𝑡)

𝑁𝑖(𝑡)
)
𝑑

𝑑𝑡
(
𝑋𝑖(𝑡)

𝑁𝑖(𝑡)
) 

  = 𝜙𝑖(𝑡)𝐻
′ (
𝑋𝑖(𝑡)

𝑁𝑖(𝑡)
) [
𝑑

𝑑𝑡
𝑋𝑖(𝑡) −

𝑋𝑖(𝑡)
𝑑
𝑑𝑡
𝑁𝑖(𝑡)

𝑁𝑖(𝑡)
] 
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      = 𝜙𝑖(𝑡)𝐻
′ (
𝑋𝑖(𝑡)

𝑁𝑖(𝑡)
) [∑𝑎𝑖𝑗(𝑡)𝑋𝑗(𝑡)

𝑗

− 𝜆per𝑋𝑖(𝑡)

−
𝑋𝑖(𝑡) (∑ 𝑎𝑖𝑗(𝑡)𝑁𝑗(𝑡)𝑗 − 𝜆per𝑁𝑖(𝑡))

𝑁𝑖(𝑡)
] 

                  = 𝜙𝑖(𝑡)𝐻
′ (
𝑋𝑖(𝑡)

𝑁𝑖(𝑡)
) 𝑎𝑖𝑗(𝑡)𝑁𝑗(𝑡)𝜙𝑖(𝑡)∑(

𝑋𝑗(𝑡)

𝑁𝑗(𝑡)
−
𝑋𝑖(𝑡)

𝑁𝑖(𝑡)
)

𝑗

 

and  

              𝜙𝑖(𝑡)𝐻 (
𝑋𝑖(𝑡)

𝑁𝑖(𝑡)
)
𝑑

𝑑𝑡
𝑁𝑖(𝑡) + 𝑁𝑖(𝑡)𝐻 (

𝑋𝑖(𝑡)

𝑁𝑖(𝑡)
)
𝑑

𝑑𝑡
𝜙𝑖(𝑡) 

 

= 𝜙𝑖(𝑡)𝐻 (
𝑋𝑖(𝑡)

𝑁𝑖(𝑡)
)(∑𝑎𝑖𝑗(𝑡)𝑁𝑗(𝑡)

𝑗

− 𝜆per𝑁𝑖(𝑡))

+ 𝑁𝑖(𝑡)𝐻 (
𝑋𝑖(𝑡)

𝑁𝑖(𝑡)
)(−∑𝑎𝑗𝑖(𝑡)𝜙𝑗(𝑡)

𝑗

+ 𝜆per𝜙𝑖(𝑡)) 

= 𝜙𝑖(𝑡)𝐻 (
𝑋𝑖(𝑡)

𝑁𝑖(𝑡)
)∑𝑎𝑖𝑗(𝑡)𝑁𝑗(𝑡)

𝑗

− 𝑁𝑖(𝑡)𝐻 (
𝑋𝑖(𝑡)

𝑁𝑖(𝑡)
)∑𝑎𝑗𝑖(𝑡)𝜙𝑗(𝑡).

𝑗

 

Thus, 

𝑑

𝑑𝑡
∑𝐻(

𝑋𝑖(𝑡)

𝑁𝑖(𝑡)
)𝑁𝑖(𝑡)𝜙𝑖(𝑡)

𝑑

𝑖=1

= −𝐷𝐻(𝑋)(𝑡). 

Corollary 2.3. A unique solution (up to a multiplicative constant) exists for the 

Floquet eigenvalue problem denoted by Equations 2.1, 2.2 and 2.3. 
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Proof. Using the general relative entropy property with the convex function 

𝐻(𝑠) = (𝑠 − 1)2, 

𝑑

𝑑𝑡
∑ 𝑁𝑖(𝑡)𝜙𝑖(𝑡) (

𝑋𝑖(𝑡)

𝑁𝑖(𝑡)
− 1)

2
𝑑
𝑖=1 = −∑ 𝑎𝑖𝑗(𝑡)𝑁𝑗(𝑡)𝜙𝑖(𝑡) (

𝑋𝑗(𝑡)

𝑁𝑗(𝑡)
−

𝑋𝑖(𝑡)

𝑁𝑖(𝑡)
)
2

𝑖,𝑗 ≤

0  

Thus ∑ 𝑁𝑖(𝑡)𝜙𝑖(𝑡) (
𝑋𝑖(𝑡)

𝑁𝑖(𝑡)
− 1)

2
𝑑
𝑖=1  is a positive, periodic and decreasing 

function, hence, it is constant and 

∑ 𝑎𝑖𝑗(𝑡)𝑁𝑗(𝑡)𝜙𝑖(𝑡) (
𝑋𝑗(𝑡)

𝑁𝑗(𝑡)
−

𝑋𝑖(𝑡)

𝑁𝑖(𝑡)
)
2

𝑖,𝑗 = 0. 

This is only possible when for all 𝑖, 𝑗 = 1, … , 𝑑, 

 

𝑋𝑗(𝑡)

𝑁𝑗(𝑡)
=
𝑋𝑖(𝑡)

𝑁𝑖(𝑡)
= 𝑐(𝑡). 

It can now be proven that in the case where 𝑋𝑖(𝑡) = 𝑐(𝑡)𝑁𝑖(𝑡),  𝑐(𝑡) must 

be constant. Using Equations 2.1 and 2.2 

           
𝑑

𝑑𝑡
𝑋𝑖(𝑡) = 𝑁𝑖(𝑡)

𝑑

𝑑𝑡
𝑐(𝑡) + 𝑐(𝑡)

𝑑

𝑑𝑡
𝑁𝑖(𝑡)

= 𝑁𝑖(𝑡)
𝑑

𝑑𝑡
𝑐(𝑡) + 𝑐(𝑡)(∑𝑎𝑖𝑗

𝑗

𝑁𝑗(𝑡) − 𝜆per𝑁𝑖(𝑡)) 

                 = 𝑁𝑖(𝑡)
𝑑

𝑑𝑡
𝑐(𝑡) + (∑𝑎𝑖𝑗

𝑗

𝑋𝑗(𝑡) − 𝜆per𝑋𝑖(𝑡)) 

= 𝑁𝑖(𝑡)
𝑑

𝑑𝑡
𝑐(𝑡) +

𝑑

𝑑𝑡
𝑋𝑖(𝑡).                    
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Then 𝑁𝑖(𝑡)
𝑑

𝑑𝑡
𝑐(𝑡) = 0. Since 𝑁𝑖(𝑡) > 0, 

𝑑

𝑑𝑡
𝑐(𝑡) = 0. So 𝑐(𝑡) is constant as 

required.  

Asymptotic behaviour 

Here, the maximum entropy principle is used to prove exponential decay. 

Proposition 2.4. If 𝑐 and 𝐶 are constants, such that 𝑐𝑁𝑖(0) ≤ 𝑋𝑖(0) ≤

𝐶𝑁𝑖(0), then it holds that 

𝑐𝑁𝑖(𝑡) ≤ 𝑋𝑖(𝑡) ≤ 𝐶𝑁𝑖(𝑡) 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑡 > 0. 

Furthermore, a constant α > 0 such that 

∑𝑁𝑖(𝑡)𝜙𝑖(𝑡) (
𝑋𝑖(𝑡)

𝑁𝑖(𝑡)
− 1)

2𝑑

𝑖=1

≤∑𝑁𝑖(0)𝜙𝑖(0) (
𝑋𝑖(0)

𝑁𝑖(0)
− 1)

2𝑑

𝑖=1

𝑒−𝛼𝑡. 

Proof. By applying the entropy principle to the convex function 𝐻(𝑠) =

𝑚𝑎𝑥(0, 𝑠 − 𝐶), it may be shown that ∑ 𝑁𝑖(0)𝜙𝑖(0)𝐻 (
𝑋𝑖(0)

𝑁𝑖(0)
)𝑑

𝑖=1 = 0. 

However, as general relative entropy is nonnegative and decaying, it remains 

zero at all times. 

∑𝑁𝑖(𝑡)𝜙𝑖(𝑡)𝐻 (
𝑋𝑖(𝑡)

𝑁𝑖(𝑡)
)

𝑑

𝑖=1

= 0 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑡 > 0. 

Since 𝑁𝑖(𝑡), 𝜙𝑖(𝑡) > 0, 𝐻 (
𝑋𝑖(𝑡)

𝑁𝑖(𝑡)
) = 0; that is 𝑋𝑖(𝑡) ≤ 𝐶𝑁𝑖(𝑡). Similarly, for 

the convex function 𝐻(𝑠) = 𝑚𝑎𝑥(0, 𝑐 − 𝑠), it can be shown that 𝑐𝑁𝑖(𝑡) ≤

𝑋𝑖(𝑡).  

To prove the second claim, the entropy property may be applied to the convex 

function 𝐻(𝑠) = (𝑠 − 1)2 to obtain 

𝑑

𝑑𝑡
∑𝑁𝑖(𝑡)𝜙𝑖(𝑡) (

𝑋𝑖(𝑡)

𝑁𝑖(𝑡)
− 1)

2𝑑

𝑖=1

= −∑𝑎𝑖𝑗(𝑡)𝑁𝑗(𝑡)𝜙𝑖(𝑡) (
𝑋𝑗(𝑡)

𝑁𝑗(𝑡)
−
𝑋𝑖(𝑡)

𝑁𝑖(𝑡)
)

2

𝑖,𝑗
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                                            ≤ −𝛼∑𝜙𝑖(𝑡)𝑁𝑖(𝑡) (
𝑋𝑖(𝑡)

𝑁𝑖(𝑡)
− 1)

2

,

𝑖

 

where Lemma 2.5 (below) and the Gronwall’s inequality (see Appendix) are 

used.  

Lemma 2.5. If 𝜙(𝑡), 𝑁(𝑡) > 0, 𝑎𝑖𝑗(𝑡) > 0 for all 𝑖, 𝑗 = 1,… , 𝑑, 𝑖 ≠ 𝑗, then 

there is a constant α > 0 such that the following inequality holds 

∑ 𝜙𝑖(𝑡)𝑎𝑖𝑗(𝑡)𝑁𝑗(𝑡) (
𝑚𝑗(𝑡)

𝑁𝑗(𝑡)
−
𝑚𝑖(𝑡)

𝑁𝑖(𝑡)
)

2𝑑

𝑖,𝑗=1

≥ 𝛼∑𝜙𝑖(𝑡)𝑁𝑖(𝑡) (
𝑚𝑖(𝑡)

𝑁𝑖(𝑡)
)

2𝑑

𝑖=1

 

for all 𝑚 such that  ∑ 𝜙𝑖(𝑡)𝑚𝑖(𝑡)
𝑑
𝑖=1 = 0. 

Proof. For the case 𝑚(𝑡) = 0, the proof is trivial. So a case where case 𝑚(𝑡) ≠

0 and is considered and normalized so that ∑ 𝜙𝑖(𝑡)𝑁𝑖(𝑡) (
𝑚𝑖(𝑡)

𝑁𝑖(𝑡)
)
2

𝑑
𝑖=1 = 1. This 

case is proven by contradiction. If no such α exists, a sequence (𝑚𝑘(𝑡))
𝑘≥1

 

can be constructed, with 

∑ 𝜙𝑖(𝑡)𝑎𝑖𝑗(𝑡)𝑁𝑗(𝑡) (
𝑚𝑗
𝑘(𝑡)

𝑁𝑗(𝑡)
−
𝑚𝑖
𝑘(𝑡)

𝑁𝑖(𝑡)
)

2𝑑

𝑖,𝑗=1

≤
1

𝑘
 

and 

∑𝜙𝑖(𝑡)𝑁𝑖(𝑡) (
𝑚𝑖
𝑘(𝑡)

𝑁𝑖(𝑡)
)

2𝑑

𝑖=1

= 1. 

The compactness of (𝑚𝑘(𝑡))
𝑘≥1

 follows from the Arzela-Ascoli theorem, so a 

convergent subsequence can be extracted still denoted by (𝑚𝑘(𝑡))
𝑘≥1

 with 
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𝑙𝑖𝑚
𝑘→∞

𝑚𝑘 (𝑡) = �̅�(𝑡). Then passing to the limit gives 

∑ 𝜙𝑖(𝑡)𝑁𝑖(𝑡) (
𝑚𝑖̅̅ ̅̅ (𝑡)

𝑁𝑖(𝑡)
)
2

𝑑
𝑖=1 = 1 and 

∑ 𝜙𝑖(𝑡)𝑎𝑖𝑗(𝑡)𝑁𝑗(𝑡) (
𝑚𝑗̅̅̅̅ (𝑡)

𝑁𝑗(𝑡)
−
𝑚𝑖̅̅̅̅ (𝑡)

𝑁𝑖(𝑡)
)

2𝑑

𝑖,𝑗=1

= 0. 

By the positivity of 𝜙𝑖(𝑡), 𝑁𝑖(𝑡), 𝑎𝑖𝑗(𝑡), 
𝑚𝑖̅̅ ̅̅ (𝑡)

𝑁𝑖(𝑡)
=

𝑚𝑗̅̅ ̅̅ (𝑡)

𝑁𝑗(𝑡)
= 𝜈(𝑡), for all 𝑖, 𝑗 =

1, … , 𝑑. However since 0 = ∑ 𝜙𝑖(𝑡)𝑁𝑖(𝑡)
𝑚𝑖̅̅ ̅̅ (𝑡)

𝑁𝑖(𝑡)
𝑑
𝑖=1 = 𝜈(𝑡) ∑ 𝜙𝑖(𝑡)𝑁𝑖(𝑡)

𝑑
𝑖=1 , it 

follows that 𝜈(𝑡) = 0, which contradicts to ∑ 𝜙𝑖(𝑡)𝑁𝑖(𝑡) (
�̅�(𝑡)

𝑁𝑖(𝑡)
)
2

𝑑
𝑖=1 = 1.  

Application to an age-structured equation 

Now a model of dynamics of population age-structured can be considered in 

which the coefficients are a periodic function of time. This is described by the 

following Von Forester-McKendrick partial differential equation 

{

𝜕

𝜕𝑡
𝑛(𝑡, 𝑥) +

𝜕

𝜕𝑥
𝑛(𝑡, 𝑥) + 𝑑(𝑡, 𝑥)𝑛(𝑡, 𝑥) = 0,   ∀𝑡 ≥ 0, 𝑥 ≥ 0

𝑛(𝑡, 𝑥 = 0) = ∫ 𝐵(𝑡, 𝑥)𝑛(𝑡, 𝑥)𝑑𝑥
∞

0

𝑛(𝑡 = 0, 𝑥) = 𝑛0(𝑥),

              (3.1) 

where 𝑛(𝑡, 𝑥) is a population density of individuals of age 𝑥 > 0 at a time 𝑡 ∈

(0,∞) with 𝑑(𝑡, 𝑥) and 𝐵(𝑡, 𝑥) representing the death and birth rate of a 

population and being 𝑇-periodic, respectively. The boundary condition at 𝑥 =

0 represents the number of newborns at time 𝑡 and 𝑛0(𝑥) is the initial age 

distribution of the population at time 𝑡 = 0. It is assumed that 𝑑 ≥ 0, 𝐵 >

0, 𝑑, 𝐵 ∈ 𝑊1,∞ and 

1 < 𝑖𝑛𝑓
𝑡∈(0,𝑇)

∫ 𝐵(. , 𝑥)𝑒−∫ 𝑑(.−𝑥+𝑦,𝑦)𝑑𝑦
𝑥
0

∞

0

𝑑𝑥, 
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𝑠𝑢𝑝
𝑡∈(0,𝑇)

∫ 𝐵(. , 𝑥)𝑒−∫ 𝑑(.−𝑥+𝑦,𝑦)𝑑𝑦
𝑥
0

∞

0

𝑑𝑥 < ∞. 

Then Equation 3.1 can be written as an evolution equation 

{

𝜕

𝜕𝑡
𝑛 = 𝐴𝑛

𝑛(0, 𝑥) = 𝑛0(𝑥)
 

with the operator 𝐴𝑛 = −
𝜕

𝜕𝑥
𝑛 − 𝑑𝑛 is defined on the space 

𝐸 = {𝑛(𝑡, 𝑥) ∈ 𝒟′((0,∞) × (0,∞))|𝑛(𝑡, 0) = ∫ 𝐵(𝑡, 𝑥)𝑛(𝑡, 𝑥)𝑑𝑥
∞

0
}. 

The long-run asymptotic behaviour of the population density, with a growth 

rate measured by the Floquet exponent λper using the Floquet eigenvalue 

problem can now be studied 

{
 
 

 
 
𝜕

𝜕𝑡
𝑁(𝑡, 𝑥) +

𝜕

𝜕𝑥
𝑁(𝑡, 𝑥) + (𝜆per + 𝑑(𝑡, 𝑥))𝑁(𝑡, 𝑥) = 0,   ∀𝑡 ≥ 0, 𝑥 ≥ 0

𝑁(𝑡, 𝑥 = 0) = ∫ 𝐵(𝑡, 𝑥)𝑁(𝑡, 𝑥)𝑑𝑥
∞

0

𝑁(𝑡, 𝑥) > 0, 𝑇 − periodic, ∫ ∫ 𝑁(𝑡, 𝑥)𝑑𝑥𝑑𝑡
∞

0

𝑇

0
= 1

     (3.2)                     

together with its adjoint eigenvalue problem 

{

−
𝜕

𝜕𝑡
𝜙(𝑡, 𝑥) −

𝜕

𝜕𝑥
𝜙(𝑡, 𝑥) + (𝜆per + 𝑑(𝑡, 𝑥))𝜙(𝑡, 𝑥) = 𝐵(𝑡, 𝑥)𝜙(𝑡, 0),  

                                                                                                   ∀𝑡 ≥ 0, 𝑥 ≥ 0

𝜙(𝑡, 𝑥) > 0, 𝑇 − periodic, ∫ 𝑁(𝑡, 𝑥)𝜙(𝑡, 𝑥)𝑑𝑥
∞

0
= 1

     (3.3)        

First, the existence and uniqueness of the following partial differential 

equation are considered 

Theorem 3.1. If 𝜇 > 0, then a unique solution 𝑛 ∈ 𝐶(𝑅+, 𝐿
1(𝑅+; 𝜙(. , 𝑥)𝑑𝑥)) 

to the below equation exists 
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{
 
 

 
 
𝜕

𝜕𝑡
𝑛(𝑡, 𝑥) +

𝜕

𝜕𝑥
𝑛(𝑡, 𝑥) + (𝜇 + 𝑑(𝑡, 𝑥))𝑛(𝑡, 𝑥) = 0,   ∀𝑡 ≥ 0, 𝑥 ≥ 0

𝑛(𝑡, 𝑥 = 0) = ∫ 𝐵(𝑡, 𝑥)𝑛(𝑡, 𝑥)𝑑𝑥
∞

0

𝑛(𝑡 = 0, 𝑥) = 𝑛0(𝑥) ∈ 𝐿1(𝑅+; 𝜙(0, 𝑥)𝑑𝑥).

 

Proof. The Banach-Fixed point theorem in the Banach space 𝑋 =

𝐶([0, 𝑇], 𝐿1(𝑅+; 𝑑𝑥)) endowed with the norm ‖𝑛‖𝑋 =

   𝑠𝑢𝑝𝑡∈[0,𝑇]‖𝑛(𝑡, . )‖𝐿1(𝑅+) and for a given 𝑛0 ∈ 𝐿1(𝑅+; 𝑑𝑥) is used to show 

that 𝑛(𝑡, 𝑥) is a fixed point of a contraction operator. The operator is defined 

as follows. 

𝑈: 𝑋 →  𝑋                   

  𝑚 ↦ 𝑛 = 𝑈(𝑚),
 

where 𝑛 is a solution of 

{
 
 

 
 
𝜕

𝜕𝑡
𝑛(𝑡, 𝑥) +

𝜕

𝜕𝑥
𝑛(𝑡, 𝑥) + (𝜇 + 𝑑(𝑡, 𝑥))𝑛(𝑡, 𝑥) = 0,

𝑛(𝑡, 𝑥 = 0) = ∫ 𝐵(𝑡, 𝑥)𝑚(𝑡, 𝑥)𝑑𝑥
∞

0

𝑛(𝑡 = 0, 𝑥) = 𝑛0(𝑥).

 

If 𝑚1, 𝑚2 ∈ 𝑋 and 𝑛𝑖 = 𝑈(𝑚𝑖), 𝑖 = 1,2, then the difference 𝑛 = 𝑛1 − 𝑛2  

satisfies 

{
 
 

 
 
𝜕

𝜕𝑡
𝑛(𝑡, 𝑥) +

𝜕

𝜕𝑥
𝑛(𝑡, 𝑥) + (𝜇 + 𝑑(𝑡, 𝑥))𝑛(𝑡, 𝑥) = 0,

𝑛(𝑡, 𝑥 = 0) = ∫ 𝐵(𝑡, 𝑥)𝑚(𝑡, 𝑥)𝑑𝑥
∞

0

𝑛(𝑡 = 0, 𝑥) = 0,

 

where = 𝑚1 −𝑚2 . It also holds that 
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{
 
 

 
 
𝜕

𝜕𝑡
|𝑛(𝑡, 𝑥)| +

𝜕

𝜕𝑥
|𝑛(𝑡, 𝑥)| + (𝜇 + 𝑑(𝑡, 𝑥))|𝑛(𝑡, 𝑥)| = 0,

|𝑛(𝑡, 𝑥 = 0)| = |∫ 𝐵(𝑡, 𝑥)𝑚(𝑡, 𝑥)𝑑𝑥
∞

0

|

|𝑛(𝑡 = 0, 𝑥)| = 0.

 

By the characteristics method, 

𝑛(𝑡, 𝑥) = {
0, , 𝑥 ≥  𝑡

𝑛(𝑡 − 𝑥, 0)𝑒−∫ (𝜇+𝑑)(𝑡−𝑥+𝑦,𝑦)𝑑𝑦
𝑥
0 , 𝑥 < 𝑡

 

Since 𝑑, 𝐵 are positive and bounded, then there is a constant 𝑀 > 0 such that 

|𝐵(𝑡, 𝑥)𝑒−∫ 𝑑(𝑡−𝑥+𝑦,𝑦)𝑑𝑦
𝑥
0 | ≤ 𝑀. 

Thus, 

‖𝑛(𝑡, . )‖𝐿1(𝑅+) = ∫ |𝑛(𝑡, 𝑥)|𝑑𝑥
𝑡

0

= ∫ |𝑛(𝑡 − 𝑥, 0)|𝑒−∫ (𝜇+𝑑)(𝑡−𝑥+𝑦,𝑦)𝑑𝑦
𝑥
0

𝑡

0

𝑑𝑥 

= ∫ |∫ 𝐵(𝑡 − 𝑥, 𝑧)𝑚(𝑡 − 𝑥, 𝑧)𝑑𝑧
∞

0

| 𝑒−∫ (𝜇+𝑑)(𝑡−𝑥+𝑦,𝑦)𝑑𝑦
𝑥
0

𝑡

0

𝑑𝑥 

≤ 𝑀∫ ‖𝑚(𝑡, . )‖𝐿1(𝑅+)

𝑡

0

𝑑𝑥 = 𝑡𝑀‖𝑚(𝑡, . )‖𝐿1(𝑅+). 

Hence, 

‖𝑛‖𝑋 = 𝑠𝑢𝑝𝑡∈[0,𝑇]‖𝑛(𝑡, . )‖𝐿1(𝑅+) ≤ 𝑠𝑢𝑝𝑡∈[0,𝑇]𝑡𝑀‖𝑚(𝑡, . )‖𝐿1(𝑅+)

= 𝑇𝑀‖𝑚‖𝑋 . 

And it is proven that 𝑈: 𝑋 →  𝑋. By selecting 𝑇 so that 𝑀 ≤
1

2
 , it follows that  

‖𝑈(𝑚1) − 𝑈(𝑚2)‖𝑋 ≤
1

2
‖𝑚1 −𝑚2‖𝑋 . 

This means that 𝑈 is a contraction in the Banach space 𝑋, which proves the 

existence of the fixed point. This process can be iterated on the intervals 

[𝑇, 2𝑇], [2𝑇, 3𝑇],… to build a solution in 𝐶(𝑅+, 𝐿
1(𝑅+; 𝑑𝑥)). Next, the density 
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argument is used to complete the proof: Let 𝑛0 ∈ 𝐿1(𝑅+; 𝜙(0, 𝑥)𝑑𝑥), ∃𝑛𝑘
0 ∈

𝐿1(𝑅+; 𝑑𝑥) such that 𝑛𝑘
0 → 𝑛0 in 𝐿1(𝑅+; 𝜙(. , 𝑥)𝑑𝑥), and 𝑛�̃�(𝑡, 𝑥) be solution 

of 

{
 

 
𝜕

𝜕𝑡
𝑛�̃�(𝑡, 𝑥) +

𝜕

𝜕𝑥
𝑛�̃�(𝑡, 𝑥) + (𝜇 + 𝑑(𝑡, 𝑥))𝑛�̃�(𝑡, 𝑥) = 0

𝑛�̃�(𝑡, 𝑥 = 0) = ∫ 𝐵(𝑡, 𝑥)𝑛�̃�(𝑡, 𝑥)𝑑𝑥
∞

0

.
 

If �̃� = 𝑛�̃� − 𝑛�̃�, then 

𝜕

𝜕𝑡
(�̃�(𝑡, 𝑥)𝜙(𝑡, 𝑥)) +

𝜕

𝜕𝑥
(�̃�(𝑡, 𝑥)𝜙(𝑡, 𝑥)) = −𝜙(𝑡, 0)𝐵(𝑡, 𝑥)�̃�(𝑡, 𝑥) 

𝜙(𝑡, 0)�̃�(𝑡, 0) = 𝜙(𝑡, 0)∫ 𝐵(𝑡, 𝑥)�̃�(𝑡, 𝑥)𝑑𝑥
∞

0

 

And it also holds that 

𝜕

𝜕𝑡
(|�̃�(𝑡, 𝑥)|𝜙(𝑡, 𝑥)) +

𝜕

𝜕𝑥
(|�̃�(𝑡, 𝑥)|𝜙(𝑡, 𝑥)) = −𝜙(𝑡, 0)𝐵(𝑡, 𝑥)|�̃�(𝑡, 𝑥)| 

𝜙(𝑡, 0)|�̃�(𝑡, 0)| = 𝜙(𝑡, 0) |∫ 𝐵(𝑡, 𝑥)�̃�(𝑡, 𝑥)𝑑𝑥
∞

0

|. 

Integrating with 𝑥 gives 

𝑑

𝑑𝑡
∫ (|�̃�(𝑡, 𝑥)|𝜙(𝑡, 𝑥))𝑑𝑥
∞

0

≤ 0. 

And finally, 

∫ |𝑛�̃� − 𝑛�̃�|𝜙(𝑡, 𝑥)𝑑𝑥
∞

0

≤ ∫ |𝑛𝑘
0 − 𝑛𝑝

0|𝜙(0, 𝑥)𝑑𝑥.
∞

0

 

Thus, �̃� is a Cauchy sequence in a Banach space 𝐶(𝑅+, 𝐿
1(𝑅+; 𝜙(. , 𝑥)𝑑𝑥)). So 

�̃� converges in the space to a solution in the distribution sense.  
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Corollary 3.2. With the assumptions on 𝑑 𝑎𝑛𝑑 𝐵 as above, there is a unique 

𝜆per > 0 and 𝑁,𝜙 ∈ 𝐶(𝑅+, 𝐿
1(𝑅+; 𝜙(. , 𝑥)𝑑𝑥)) of the Floquet eigenvalue 

problem in Equation 3.2 and its adjoint eigenvalue problem in Equation 3.3. 

Proof. If 𝜆per = 𝜇 > 0, then 𝑁(𝑡, 𝑥) ∈ 𝐶(𝑅+, 𝐿
1(𝑅+; 𝜙(. , 𝑥)𝑑𝑥)) exists by 

Theorem 3.1. It satisfies 

𝜕

𝜕𝑡
𝑁(𝑡, 𝑥) +

𝜕

𝜕𝑥
𝑁(𝑡, 𝑥) + (𝜆per + 𝑑(𝑡, 𝑥))𝑁(𝑡, 𝑥) = 0. 

Similarly, its adjoint is given by 

−
𝜕

𝜕𝑡
𝜙(𝑡, 𝑥) −

𝜕

𝜕𝑥
𝜙(𝑡, 𝑥) + (𝜆per + 𝑑(𝑡, 𝑥))𝜙(𝑡, 𝑥) = 𝐵(𝑡, 𝑥)𝜙(𝑡, 0), 

where 𝜙(𝑡, 𝑥) ∈ 𝐶(𝑅+, 𝐿
1(𝑅+; 𝜙(. , 𝑥)𝑑𝑥)). Moreover, the operator 𝑈 is 

strictly positive in 𝐶(𝑅+, 𝐿
1(𝑅+; 𝑑𝑥)) and 𝑇-periodic as soon as 𝑑, 𝐵 are. It is 

also compact since 𝑠𝑢𝑝 {‖𝑈(𝑛)‖𝑋; ‖𝑛‖𝑋 ≤ 1} is uniformly bounded hence 

equicontinuous and compactness follow from the Arzela-Ascoli theorem.  

Then by Corollary 1.11 and Corollary 1.14 with 𝜆per = 𝜇 such that 𝑟(𝜇) = 1, 

the spectral radius of 𝑈 and up to renormalization 𝑁,𝜙 is unique. To end the 

proof,  𝜇 needs to be found such that 𝑟(𝜇) = 1. Since 𝑟 is decreasing function 

and vanishes at infinity and 

𝑟(0) ≥ 𝑖𝑛𝑓∫ 𝐵(. , 𝑥)𝑒−∫ 𝑑(.−𝑥+𝑦,𝑦)𝑑𝑦
𝑥
0

∞

0

𝑑𝑥 > 1. 

It follows that a unique 𝜆per exists such that 𝑟(𝜆per) = 1.  

Long run asymptotic: exponential decay 

In this section, long-run asymptotic exponential decay will be proven. 

Theorem 3.3. Under the assumptions for 𝑑 𝑎𝑛𝑑 𝐵 above and an additional 

assumption that  ∃α > 0 such that 𝐵(𝑡, 𝑥) ≥ 𝛼
𝜙(𝑡,𝑥)

𝜙(𝑡,0)
, it follows that 
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∫ |𝑛(𝑡, 𝑥)𝑒−𝜆per𝑡
∞

0

− 𝜌𝑁(𝑡, 𝑥)|𝜙(𝑡, 𝑥)𝑑𝑥                                                                      

≤ 𝑒−𝛼𝑡 ∫ |𝑛0(𝑥) − 𝜌𝑁(0, 𝑥)|𝜙(0, 𝑥)𝑑𝑥,
∞

0

 

where 𝜌 = ∫ 𝑛0(𝑥)𝜙(0, 𝑥)𝑑𝑥
∞

0
. 

Proof. By taking ℎ(𝑡, 𝑥) = 𝑛(𝑡, 𝑥)𝑒−𝜆per𝑡 − 𝜌𝑁(𝑡, 𝑥) and using Equations 3.1, 

3.2 and 3.3 

𝜕

𝜕𝑡
(ℎ(𝑡, 𝑥)𝜙(𝑡, 𝑥)) +

𝜕

𝜕𝑥
(ℎ(𝑡, 𝑥)𝜙(𝑡, 𝑥)) = −𝜙(𝑡, 0)𝐵(𝑡, 𝑥)ℎ(𝑡, 𝑥) 

𝜙(𝑡, 0)ℎ(𝑡, 0) = 𝜙(𝑡, 0)∫ 𝐵(𝑡, 𝑥)ℎ(𝑡, 𝑥)𝑑𝑥.
∞

0

 

By integrating with respect to 𝑥, it follows that 

𝑑

𝑑𝑡
∫ ℎ(𝑡, 𝑥)𝜙(𝑡, 𝑥)𝑑𝑥
∞

0

= −𝜙(𝑡, 0)∫ 𝐵(𝑡, 𝑥)ℎ(𝑡, 𝑥)𝑑𝑥
∞

0

+ ℎ(𝑡, 0)𝜙(𝑡, 0)

= 0. 

Then, 

∫ ℎ(𝑡, 𝑥)𝜙(𝑡, 𝑥)𝑑𝑥
∞

0

= ∫ ℎ(0, 𝑥)𝜙(0, 𝑥)𝑑𝑥
∞

0

                                     

                           = ∫ (𝑛0(𝑥) − 𝜌𝑁(0, 𝑥))𝜙(0, 𝑥)𝑑𝑥
∞

0

 

                                                 = ∫ 𝑛0(𝑥)𝜙(0, 𝑥)𝑑𝑥
∞

0

− 𝜌∫ 𝑁(0, 𝑥)𝜙(0, 𝑥)𝑑𝑥
∞

0

 

                                  = ∫ 𝑛0(𝑥)𝜙(0, 𝑥)𝑑𝑥
∞

0

− 𝜌 = 0.                 

And it also holds that, 
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𝜕

𝜕𝑡
(|ℎ(𝑡, 𝑥)|𝜙(𝑡, 𝑥)) +

𝜕

𝜕𝑥
(|ℎ(𝑡, 𝑥)|𝜙(𝑡, 𝑥)) = −𝜙(𝑡, 0)𝐵(𝑡, 𝑥)|ℎ(𝑡, 𝑥)| 

𝜙(𝑡, 0)|ℎ(𝑡, 0)| = 𝜙(𝑡, 0) |∫ 𝐵(𝑡, 𝑥)ℎ(𝑡, 𝑥)𝑑𝑥
∞

0

|. 

Now integrating with respect to 𝑥, 

𝜕

𝜕𝑡
∫ |ℎ(𝑡, 𝑥)|𝜙(𝑡, 𝑥)
∞

0
𝑑𝑥 = −𝜙(𝑡, 0) ∫ 𝐵(𝑡, 𝑥)|ℎ(𝑡, 𝑥)|𝑑𝑥

∞

0
+

|ℎ(𝑡, 0)|𝜙(𝑡, 0)    

≤ −𝜙(𝑡, 0)∫ 𝐵(𝑡, 𝑥)|ℎ(𝑡, 𝑥)|𝑑𝑥
∞

0

+ |∫ [𝜙(𝑡, 0)𝐵(𝑡, 𝑥)ℎ(𝑡, 𝑥) − 𝛼𝜙(𝑡, 𝑥)ℎ(𝑡, 𝑥)]𝑑𝑥
∞

0

| 

≤ −𝜙(𝑡, 0)∫ 𝐵(𝑡, 𝑥)|ℎ(𝑡, 𝑥)|𝑑𝑥
∞

0

+∫ (𝜙(𝑡, 0)𝐵(𝑡, 𝑥) − 𝛼𝜙(𝑡, 𝑥))|ℎ(𝑡, 𝑥)|𝑑𝑥            
∞

0

 

≤ −𝛼∫ 𝜙(𝑡, 𝑥)|ℎ(𝑡, 𝑥)|𝑑𝑥.                                                                    
∞

0

 

The proof is completed with Gronwall’s inequality.  

Long run asymptotic by the entropy method 

Now long run asymptotic behaviour is proven by the entropy method. 

Theorem 3.4.  

1. For all convex function 𝐻 and all 𝑡 > 0; it holds that 

𝑑

𝑑𝑡
∫ 𝜙(𝑡, 𝑥)𝑁(𝑡, 𝑥)𝐻 (

𝑛(𝑡, 𝑥)𝑒−𝜆per𝑡

𝑁(𝑡, 𝑥)
) 𝑑𝑥

∞

0

= −𝐷𝐻(𝑛)(𝑡) ≤ 0 

where 
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𝐷𝐻(𝑛)(𝑡) = 𝜙(𝑡, 0)𝑁(𝑡, 0) [∫ 𝐻 (
𝑛(𝑡, 𝑥)𝑒−𝜆per𝑡

𝑁(𝑡, 𝑥)
)

∞

0

𝑑𝜇𝑡                       

− 𝐻 (∫
𝑛(𝑡, 𝑥)𝑒−𝜆per𝑡

𝑁(𝑡, 𝑥)
𝑑𝜇𝑡(𝑥)

∞

0

)].                  

2. For the probability measure 𝑑𝜇𝑡(𝑥) = [𝐵(𝑡, 𝑥)𝑁(𝑡, 𝑥)/𝑁(𝑡, 0)]𝑑𝑥 

and for all convex functions 𝐻:𝑅+ → 𝑅+; it holds that 

 

∫ [∫ 𝐻 (
𝑛(𝑡, 𝑥)𝑒−𝜆per𝑡

𝑁(𝑡, 𝑥)
)𝑑𝜇𝑡(𝑥)

∞

0

− 𝐻(∫
𝑛(𝑡, 𝑥)𝑒−𝜆per𝑡

𝑁(𝑡, 𝑥)
𝑑𝜇𝑡(𝑥)

∞

0

)]𝑑𝑡
∞

0

 

                                                           ≤ 𝐾∫ 𝜙(0, 𝑥)𝑁(0, 𝑥)𝐻 (
𝑛0(𝑥)

𝑁(0, 𝑥)
) 𝑑𝑥

∞

0

. 

Proof. Using Equations 3.1 and 3.2, 

𝜕

𝜕𝑡
(
𝑛(𝑡, 𝑥)𝑒−𝜆per𝑡

𝑁(𝑡, 𝑥)
) +

𝜕

𝜕𝑥
(
𝑛(𝑡, 𝑥)𝑒−𝜆per𝑡

𝑁(𝑡, 𝑥)
) = 0. 

Hence, 

𝜕

𝜕𝑡
𝐻 (

𝑛(𝑡, 𝑥)𝑒−𝜆per𝑡

𝑁(𝑡, 𝑥)
) +

𝜕

𝜕𝑥
𝐻 (

𝑛(𝑡, 𝑥)𝑒−𝜆per𝑡

𝑁(𝑡, 𝑥)
) = 0. 

And finally, it holds that 

𝜕

𝜕𝑡
[𝜙(𝑡, 𝑥)𝑁(𝑡, 𝑥)𝐻 (

𝑛(𝑡, 𝑥)𝑒−𝜆per𝑡

𝑁(𝑡, 𝑥)
)]                              

                                                 +
𝜕

𝜕𝑥
[𝜙(𝑡, 𝑥)𝑁(𝑡, 𝑥)𝐻 (

𝑛(𝑡, 𝑥)𝑒−𝜆per𝑡

𝑁(𝑡, 𝑥)
)]                       

 

= 𝑁(𝑡, 𝑥)𝐻 (
𝑛(𝑡, 𝑥)𝑒−𝜆per𝑡

𝑁(𝑡, 𝑥)
)(

𝜕

𝜕𝑡
𝜙(𝑡, 𝑥) +

𝜕

𝜕𝑥
𝜙(𝑡, 𝑥)) 
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    +𝜙(𝑡, 𝑥)𝐻 (
𝑛(𝑡, 𝑥)𝑒−𝜆per𝑡

𝑁(𝑡, 𝑥)
)(

𝜕

𝜕𝑡
𝑁(𝑡, 𝑥) +

𝜕

𝜕𝑥
𝑁(𝑡, 𝑥)) 

                       +𝜙(𝑡, 𝑥)𝑁(𝑡, 𝑥) [
𝜕

𝜕𝑡
𝐻 (

𝑛(𝑡, 𝑥)𝑒−𝜆per𝑡

𝑁(𝑡, 𝑥)
) +

𝜕

𝜕𝑥
𝐻 (

𝑛(𝑡, 𝑥)𝑒−𝜆per𝑡

𝑁(𝑡, 𝑥)
)] 

= −𝐵(𝑡, 𝑥)𝜙(𝑡, 0)𝑁(𝑡, 𝑥)𝐻 (
𝑛(𝑡, 𝑥)𝑒−𝜆per𝑡

𝑁(𝑡, 𝑥)
).                 

Integrating with 𝑥 and using the notation 𝑑𝜇𝑡(𝑥) = [𝐵(𝑡, 𝑥)𝑁(𝑡, 𝑥)/

𝑁(𝑡, 0)]𝑑𝑥, which is a probability measure                            

𝑑

𝑑𝑡
∫ 𝜙(𝑡, 𝑥)𝑁(𝑡, 𝑥)𝐻 (

𝑛(𝑡, 𝑥)𝑒−𝜆per𝑡

𝑁(𝑡, 𝑥)
) 𝑑𝑥                                         

∞

0

= −∫
𝜕

𝜕𝑥
[𝜙(𝑡, 𝑥)𝑁(𝑡, 𝑥)𝐻 (

𝑛(𝑡, 𝑥)𝑒−𝜆per𝑡

𝑁(𝑡, 𝑥)
)] 𝑑𝑥

∞

0

 

− ∫ 𝐵(𝑡, 𝑥)𝜙(𝑡, 0)𝑁(𝑡, 𝑥)𝐻 (
𝑛(𝑡, 𝑥)𝑒−𝜆per𝑡

𝑁(𝑡, 𝑥)
) 𝑑𝑥

∞

0

   

                          = 𝜙(𝑡, 0)𝑁(𝑡, 0)𝐻 (
𝑛(𝑡, 0)𝑒−𝜆per𝑡

𝑁(𝑡, 0)
)           

− 𝜙(𝑡, 0)𝑁(𝑡, 0)∫ 𝐻 (
𝑛(𝑡, 𝑥)𝑒−𝜆per𝑡

𝑁(𝑡, 𝑥)
)𝑑𝜇𝑡(𝑥)

∞

0

      

                           = 𝜙(𝑡, 0)𝑁(𝑡, 0) [𝐻 (∫
𝑛(𝑡, 𝑥)𝑒−𝜆per𝑡

𝑁(𝑡, 𝑥)
𝑑𝜇𝑡(𝑥)

∞

0

)    

− ∫ 𝐻 (
𝑛(𝑡, 𝑥)𝑒−𝜆per𝑡

𝑁(𝑡, 𝑥)
) 𝑑𝜇𝑡(𝑥)

∞

0

].                  
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The last quantity is negative because of Jensen’s inequality. This shows that 

∫ 𝜙(𝑡, 𝑥)𝑁(𝑡, 𝑥)𝐻 (
𝑛(𝑡,𝑥)𝑒−𝜆per𝑡

𝑁(𝑡,𝑥)
) 𝑑𝑥

∞

0
 is decaying and so the first inequality is 

found. By integrating again in 𝑡, the second inequality is obtained. 

Theorem 3.5. Under the assumptions for 𝑑 𝑎𝑛𝑑 𝐵 above and 𝑛0 ∈

𝐿1(𝑅+, 𝜙(0, 𝑥)𝑑𝑥), it holds that 

∫ |𝑛(𝑡, 𝑥)𝑒−𝜆per𝑡 − 𝜌𝑁(𝑡, 𝑥)|𝜙(𝑡, 𝑥)𝑑𝑥 →
∞

0

0 𝑎𝑠 𝑡 → ∞, 

where 𝜌 = ∫ 𝑛0(𝑥)𝜙(0, 𝑥)𝑑𝑥
∞

0
. 

Proof. By setting ℎ(𝑡, 𝑥) = 𝑛(𝑡, 𝑥)𝑒−𝜆per𝑡 − 𝜌𝑁(𝑡, 𝑥),  ℎ satisfies the equation                  

{

𝜕

𝜕𝑡
ℎ(𝑡, 𝑥) +

𝜕

𝜕𝑥
ℎ(𝑡, 𝑥) + (𝜆per + 𝑑(𝑡, 𝑥)) ℎ(𝑡, 𝑥) = 0,  ∀𝑡 ≥ 0, 𝑥 ≥ 0

ℎ(𝑡, 𝑥 = 0) = ∫ 𝐵(𝑡, 𝑥)ℎ(𝑡, 𝑥)𝑑𝑥
∞

0

           

(3.4) 

It also holds 

𝜕

𝜕𝑡
(|ℎ(𝑡, 𝑥)|𝜙(𝑡, 𝑥)) +

𝜕

𝜕𝑥
(|ℎ(𝑡, 𝑥)|𝜙(𝑡, 𝑥)) = −𝜙(𝑡, 0)𝐵(𝑡, 𝑥)|ℎ(𝑡, 𝑥)| 

𝜙(𝑡, 0)|ℎ(𝑡, 0)| = 𝜙(𝑡, 0) |∫ 𝐵(𝑡, 𝑥)ℎ(𝑡, 𝑥)𝑑𝑥
∞

0

|. 

Now integrating with respect to 𝑥, 

𝜕

𝜕𝑡
∫ |ℎ(𝑡, 𝑥)|𝜙(𝑡, 𝑥)
∞

0

𝑑𝑥

= −𝜙(𝑡, 0)∫ 𝐵(𝑡, 𝑥)|ℎ(𝑡, 𝑥)|𝑑𝑥
∞

0

+ |ℎ(𝑡, 0)|𝜙(𝑡, 0)  ≤ 0. 

This yields that ∫ |ℎ(𝑡, 𝑥)|𝜙(𝑡, 𝑥)𝑑𝑥
∞

0
 is decaying and it is positive, so it 

converges to some value 𝐿 ≥ 0. It remains to prove that 𝐿 = 0. 
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Now the solutions ℎ𝑘(𝑡, 𝑥) = ℎ(𝑡 + 𝑘, 𝑥) ∈ 𝐶(𝑅+, 𝐿
1(𝑅+; 𝜙(. , 𝑥)𝑑𝑥)) to 

Equation 3.4 are defined. If 𝐻 is positive convex, then Theorem 3.4 shows that 

a quantity 𝐼𝑘 defined by 

𝐼𝑘 = ∫ [∫ 𝐻 (
ℎ𝑘(𝑡, 𝑥)

𝑁(𝑡, 𝑥)
) 𝑑𝜇𝑡(𝑥)

∞

0

− 𝐻(∫
ℎ𝑘(𝑡, 𝑥)

𝑁(𝑡, 𝑥)
𝑑𝜇𝑡(𝑥)

∞

0

)] 𝑑𝑡
∞

0

 

    = ∫ [∫ 𝐻 (
ℎ(𝑡, 𝑥)

𝑁(𝑡, 𝑥)
) 𝑑𝜇𝑡(𝑥)

∞

0

− 𝐻 (∫
ℎ(𝑡, 𝑥)

𝑁(𝑡, 𝑥)
𝑑𝜇𝑡(𝑥)

∞

0

)]𝑑𝑡
∞

𝑘

 

is bounded. As the integrand is positive and integrable, it can be deduced that 

𝑙𝑖𝑚
𝑘→∞

𝐼𝑘 = 0. Moreover, ℎ𝑘(𝑡, 𝑥) satisfies the equation 

{
  
 

  
 
𝜕

𝜕𝑡
ℎ𝑘(𝑡, 𝑥) +

𝜕

𝜕𝑥
ℎ𝑘(𝑡, 𝑥) + (𝜆per + 𝑑(𝑡, 𝑥)) ℎ𝑘(𝑡, 𝑥) = 0,   ∀𝑡 ≥ 0, 𝑥 ≥ 0

ℎ𝑘(𝑡, 𝑥 = 0) = ∫ 𝐵(𝑡, 𝑥)ℎ𝑘(𝑡, 𝑥)𝑑𝑥
∞

0

∫ ℎ𝑘(𝑡, 𝑥)𝜙(𝑡, 𝑥)𝑑𝑥
∞

0

= 0.

 

Then  ℎ𝑘(𝑡, 𝑥) ∈ 𝐿
1(𝑅+; 𝜙(. , 𝑥)𝑑𝑥) is bounded up to a subsequence, ℎ𝑘 ⇀ 𝑔 

weakly. Passing to the limit in the definition of 𝐼𝑘 and using the convexity in 

weak limits, 

∫ ∫ 𝐻 (
𝑔(𝑡, 𝑥)

𝑁(𝑡, 𝑥)
) 𝑑𝜇𝑡(𝑥)𝑑𝑡

∞

0

∞

0

≤ 𝑙𝑖𝑚
𝑘→∞

∫ ∫ 𝐻(
ℎ𝑘(𝑡, 𝑥)

𝑁(𝑡, 𝑥)
) 𝑑𝜇𝑡(𝑥)𝑑𝑡

∞

0

∞

0

 

 

                                               = ∫ 𝐻 (∫
𝑔(𝑡, 𝑥)

𝑁(𝑡, 𝑥)
𝑑𝜇𝑡(𝑥)

∞

0

)𝑑𝑡
∞

0

. 

The last equality is valid since 𝑙𝑖𝑚
𝑘→∞

𝐼𝑘 = 0. But from Jensen’s inequality, the 

reverse inequality is also found. Hence, 
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∫ ∫ 𝐻 (
𝑔(𝑡, 𝑥)

𝑁(𝑡, 𝑥)
) 𝑑𝜇𝑡(𝑥)𝑑𝑡

∞

0

∞

0

= ∫ 𝐻(∫
𝑔(𝑡, 𝑥)

𝑁(𝑡, 𝑥)
𝑑𝜇𝑡(𝑥)

∞

0

)𝑑𝑡.
∞

0

 

This strictly convex equality for 𝐻 shows that for almost all 𝑡 > 0 on the 

support of 𝜇𝑡, 

𝑔(𝑡, 𝑥)

𝑁(𝑡, 𝑥)
= 𝐶(𝑡). 

The limit in the weak sense gives 

{
 

 
𝜕

𝜕𝑡
𝑔(𝑡, 𝑥) +

𝜕

𝜕𝑥
𝑔(𝑡, 𝑥) + (𝜆per + 𝑑(𝑡, 𝑥)) 𝑔(𝑡, 𝑥) = 0,   ∀𝑡 ≥ 0, 𝑥 ≥ 0

𝑔(𝑡, 𝑥 = 0) = ∫ 𝐵(𝑡, 𝑥)𝑔(𝑡, 𝑥)𝑑𝑥
∞

0

 

and 

𝜕

𝜕𝑡

𝑔(𝑡, 𝑥)

𝑁(𝑡, 𝑥)
+
𝜕

𝜕𝑥

𝑔(𝑡, 𝑥)

𝑁(𝑡, 𝑥)
= 0 

Hence 
𝑔(𝑡,𝑥)

𝑁(𝑡,𝑥)
= 𝐶(𝑡) and as a result 

0 = ∫ 𝑔(𝑡, 𝑥)𝜙(𝑡, 𝑥)𝑑𝑥
∞

0

= 𝐶(𝑡)∫ 𝑁(𝑡, 𝑥)𝜙(𝑡, 𝑥)𝑑𝑥
∞

0

= 𝐶(𝑡). 

It can be concluded that 𝐿 = 0 since 𝐿 = ∫ |𝑔(𝑡, 𝑥)|𝜙(𝑡, 𝑥)𝑑𝑥
∞

0
. 

Here, the following Lemma 3.6 (Perthame, 2007, p. 100) was used. 

Lemma 3.6. Any function 𝑢 = 𝑔/𝑁 satisfies 

𝑔

𝑁
(𝑡, 𝛤(𝑥)) =

𝑔

𝑁
(𝑡, 𝑥)  ∀𝑡 > 0, 𝑥 ≥ 0 

and the fact that  

𝜕

𝜕𝑡
(
𝑔(𝑡, 𝑥)

𝑁(𝑡, 𝑥)
) +

𝜕

𝜕𝑥
(
𝑔(𝑡, 𝑥)

𝑁(𝑡, 𝑥)
) = 0 

is constant. 
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Discussion and Conclusion  

An age-structured model with both death and birth rates depending only 

on age (not varying in time) was analyzed for the existence of long-run 

behaviour. This model was based on the general relative entropy method in 

Perthame (2007).  

In this work, an age-structured model with both death and birth rates of 

a population that depend on age and time, and that is periodic over time has 

been analyzed. Floquet theory was applied to Banach space to prove the 

existence and uniqueness of the solution of this age-structured equation. In 

addition, the general relative entropy method (Perthame, 2007) has been 

used to derive the asymptotic exponential decay of the solution for this 

setting. 

The exponential rate of convergence guarantees that the solution reaches 

the steady-state fast enough to be observed in practice. The exponential 

decay rate is known in the case of non-constant coefficients (Gwiazda & 

Perthame, 2006). While in our case, the exponential decay holds for a wider 

class of data. 

The existence and uniqueness of the solution for the Floquet eigenvalue 

problem for the periodic operator on Banach space have been proven, so as 

long as the models can be written as a partial differential evolution equation. 

It is now tempting to apply the Floquet theory on Banach space to more 

advanced models such as age-structured models with migration, growth-

fragmentation equations or cell division equations (Mischler & Scher, 2016). 
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The aim of this work was twofold. On one hand, the existence and 

uniqueness of the solution of the Floquet eigenvalue problem on Banach 

space have been proven. On the other hand, the existence and uniqueness of 

the solution of the age-structured equation with positive and periodic 

coefficients have been proven. Moreover, long-run asymptotic exponential 

decay of the solution of the age-structured equation has been derived. 

Appendix 

Lemma (Gronwall’s inequality). If 𝑢 ∈ 𝐶1([0, 𝑇]) satisfying  
𝑑

𝑑𝑡
𝑢(𝑡) ≤

𝛼𝑢(𝑡), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ [0, 𝑇] where α is constant, then 𝑢(𝑡) ≤ 𝑢(0)eα𝑡. 

Definition. If 𝑇 be an operator on a Banach space, the spectrum of 𝑇 is 𝜎(𝑇) =

{𝜆 ∈ 𝐶: (𝜆𝐼 − 𝑇)−1  does not exist}. Thus, the spectral radius of 𝑇 is 𝑟(𝑇) =

𝑠𝑢𝑝{ |𝜆|: 𝜆 ∈ 𝜎(𝑇)}. 

Theorem. The spectrum of a bounded linear operator coincides with the 

spectrum of its adjoint; that is, 𝜎(𝑇) = 𝜎(𝑇∗). In particular, 𝑟(𝑇) = 𝑟(𝑇∗). 

Theorem (Perron-Frobenius) (Perthame, 2007, p 160). If 𝐴 is a positive, 

irreducible matrix, 𝑑 × 𝑑; then the spectral radius 𝑟(𝐴) of 𝐴 is a positive 

simple eigenvalue of 𝐴 associated with a positive eigenvector. 

Definition. A cone 𝐾 in a real Banach space (𝑋, ‖. ‖) is a closed set of 𝑋 if it 

satisfies 

1. 0 ∈ 𝐾 

2. 𝑥, 𝑦 ∈ 𝐾, then 𝜆𝑥 + 𝜇𝑦 ∈ 𝐾, ∀𝜆, 𝜇 ≥ 0 

3. 𝑥 ∈ 𝐾 and −𝑥 ∈ 𝐾, then 𝑥 = 0 

On a real Banach space (𝑋, ‖. ‖) the order on a cone 𝐾 is defined by 

(𝑥 ≥ 𝑦 ⇔ 𝑥 − 𝑦 ∈ 𝐾)  and  (𝑥 > 𝑦 ⇔ 𝑥 − 𝑦 ∈ 𝐼𝑛𝑡(𝐾)) 
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A cone 𝐾 is reproducible if ∀𝑥 ∈ 𝑋, ∃𝑦, 𝑧 ∈ 𝐾, 𝑥 = 𝑦 − 𝑧. 

A cone  𝐾 is normal if 0 ≤ 𝑥 ≤ 𝑦 ⇒ ‖𝑥‖ ≤ ‖𝑦 ‖. 

A dual cone of 𝐾 is 𝐾∗ = {𝑦 ∈ 𝑋∗, ∀𝑥 ∈ 𝐾, 〈𝑦, 𝑥〉 ≥ 0}. 

Theorem (Krein-Rutman) (Perthame, 2007, p. 175). If  (𝑋, ‖. ‖) is a real Banach 

space, 𝐾 ⊂ 𝑋 a reproducible and normal and 𝑇 linear, compact and strictly 

positive (on 𝐾) operator. Then the spectral radius 𝑟(𝑇) of 𝑇 is a positive 

simple eigenvalue of 𝑇 associated with a positive eigenvector. In addition, if 

𝐼𝑛𝑡(𝐾∗) is non-empty, then 𝑟(𝑇) is also a positive simple eigenvalue of the 

adjoint operator 𝑇∗ associated with a positive eigenvector. 

Theorem (Banach-Fixed Point). If (𝑋, 𝑑) is a complete metric space and 

𝑓: 𝑋 → 𝑋 is a contraction; that is, 𝑘 ∈ [0,1) exists such that 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑥, 𝑦 ∈ 𝑋, 

𝑑(𝑓(𝑥), 𝑓(𝑦)) ≤ 𝑘𝑑(𝑥, 𝑦). 

Then there exists a unique fixed point for 𝑓. 

Theorem (Arzela-Ascoli). If (𝑋, 𝑑) is a compact metric space. A subset ℱ of 

𝐶(𝑋) is relatively compact if and only if ℱ is bounded and equicontinuous. 

Corollary. If (𝑋, 𝑑) is a compact metric space and (𝑓𝑛) ⊂ 𝐶(𝑋) is a bounded 

sequence and equicontinuous in 𝐶(𝑋), then (𝑓𝑛) has a uniformly convergent 

subsequence. 
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